Chemical Communications

Number 17 1987

A Route to Homonuclear Pt₃ and Heteronuclear Pt₂M Complexes

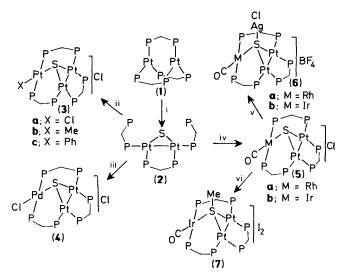
Nasim Hadj-Bagheri and Richard J. Puddephatt*

Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7

The complex $[Pt_2(\mu-S)(\mu-dppm)(\sigma-dppm)_2]$ (dppm = Ph_2PCH_2PPh_2) prepared by reaction of $[Pt_2(\mu-dppm)_3]$ with COS, acts as a tridentate (P₂S donor) ligand for square planar metal atoms and hence gives homonuclear (Pt₃) or heteronuclear (Pt₂M, M = Pd, Rh, or Ir) complexes, which show unusual fluxional behaviour involving sulphur inversion.

The ability of $Pt_2(\mu$ -S) and $Pt(\sigma$ -dppm) (dppm = $Ph_2PCH_2PPh_2$) groups to act as assembling ligands is known.^{1,2} It is now shown that the combination of these groups can give a route to new homonuclear Pt_3 and heteronuclear Pt_2M complexes and that inversion of the resulting $Pt_2M(\mu_3$ -S) groups occurs readily.

The synthetic method is shown in Scheme 1 and is based on the formation of $[Pt_2(\mu-S)(\mu-dppm)(\sigma-dppm)_2]$ (2) in high yield by reaction of $[Pt_2(\mu-dppm)_3]$ (1) with carbonyl sulphide (COS).[†] Complex (2) contains two σ dppm ligands and a μ_2 -S group and acts as a powerful tridentate ligand towards square planar metal centres as shown in Scheme 1.


The homonuclear complexes (3) are isostructural with $[Pt_3H(\mu-S)(\mu-dppm)_3]^+$, prepared in a different way,³ and were readily characterized by elemental analysis and by their spectroscopic properties.[†] The derivatives (3b) and (3c) are rare examples of stable clusters with σ -alkyl or aryl ligands.⁴ The heteronuclear complexes (4) and (5), containing Pt_2Pd, Pt_2Rh, and Pt_2Ir units, were prepared in almost quantitative

† Selected n.m.r. [refs. SiMe₄, (MeO)₃PO, or K₂PtCl₄; J in Hz], mass spectroscopic [found (calc.)], and i.r. data: (2), $\delta(P) - 29.6$ [m, $^{2}J(P^{a}P^{b})$ 41, P^{a} ; 16.0 [m, $^{1}J(PtP)$ 3200, $^{2}J(PtP)$ 190, $^{3}J(P^{b}P^{b})$ 180, P^{b}]; -11.7 p.p.m. [m, ${}^{1}J(PtP)$ 3500, ${}^{2}J(PtP)$ -80, Pc]; $\delta({}^{195}Pt)$ -3200p.p.m. [m, ¹J(PtPt) 3100]; m/z 1575 (M, 1575). (3b), $\delta(^{1}H) = 0.46$ [t, ²J(PtH) 66, ³J(PH) 7, MePt]; δ (P) 25.4 [m, ¹J(PtP) 3060, ²J(PaPb) 20, ${}^{4}J(P^{a}P^{c})$ 7, P^{a}]; 1.7 [m, ${}^{1}J(PtP)$ 3080, ${}^{2}J(PtP)$ 210, ${}^{3}J(PP)$ 170, P^{b}]; -12.6 p.p.m. [m, ¹J(PtP) 3840, ²J(PtP) -80, P^c]; δ(¹⁹⁵Pt) -2991 [m, Pt^a]; -3199 p.p.m. [m, ¹J(Pt^bPt^b) 2850, Pt^b]; m/z 1785 (M - Cl, 1785). (4), $\delta(P) 20.85 [m, {}^{2}J(P^{a}P^{b}) 25, {}^{4}J(P^{a}P^{c}) 5, P^{a}]; 4.9 [m, {}^{1}J(PtP) 3042,$ ²J(PtP) 150, ³J(PbPb) 163, Pb]; -9.3 p.p.m. [m, ¹J(PtP) 3848, ²J(PtP) -78, P^{c}]; δ (¹⁹⁵Pt) -3123 p.p.m. [m, ¹J(PtPt) 2750, Pt^b]; m/z 1717 (M - Cl, 1717). (5a), $\delta(P) 26.9 \text{ [m, } {}^{1}J(RhP) 130.5, {}^{2}J(P^{a}P^{b}) 32, {}^{4}J(P^{a}P^{c}) 8, P^{a}\text{]}; 4.2 \text{ [m, } {}^{1}J(PtP) 3080, {}^{2}J(PtP) 170, {}^{3}J(P^{b}P^{b}) 170, P^{b}\text{]}; -9.3$ p.p.m. [m, ${}^{1}J(PtP)$ 3920, ${}^{2}J(PtP)$ -68, Pc]; $\delta({}^{195}Pt)$ -3173 p.p.m. [m, 1/(PtPt) 2490, 2/(RhPt) 177, Ptb; m/z 1742, 1706 (M, 1742); i.r. v(CO) 1973 cm⁻¹. (**6a**), $\delta(\text{P})$ 31.8 [m, $^{1}J(\text{RhP})$ 120, $^{2}J(\text{PaPb})$ 32, ${}^{4}J(P^{a}P^{c})$ 7, P^{a}]; 11.1 [m, ${}^{1}J(PtP)$ 3100, ${}^{2}J(PtP)$ 195, ${}^{3}J(P^{b}P^{b})$ 145, P^{b}]; -9.3 p.p.m. [m, ${}^{1}J(PtP)$ 3700, ${}^{2}J(PtP)$ -80, Pc]; $\delta({}^{195}Pt)$ -2896p.p.m. (m); m/z 1814 ($M - Cl, BF_4, 1814$); i.r. v(CO) 1998 cm⁻¹. (7), $\delta(H)$ 1.78 [t, J(PH) 6, MeS]; $\delta(P) - 18.1$ (m, P^a); -1.96 [m, ¹J(PtP) 3150, ²J(PtP) 135, ³J(PP) 165, Pb]; -10.4 p.p.m. [m, ¹J(PtP) 3925, Pc]; m/z 1937 (M - I); i.r. v(CO) 2047 cm⁻¹. The couplings $^{3}J(P^{b}P^{b})$ are observed in the 195Pt satellite spectra.

yields as shown in Scheme 1, and were characterized similarly.† These appear to be the first known Pt_2Pd and Pt_2Ir clusters.¹⁻⁴

The only metal-metal bonding in complexes (3)—(6) is between the Pt₂ atoms as shown by the large values of ${}^{1}J(PtPt)$ 2485—3087 Hz, ${}^{2}J(Pt^{b}P^{b})$ 150—190 Hz, and ${}^{3}J(P^{b}P^{b})$ 160— 180 Hz,³ whereas, for example, no coupling $J(Pt^{a}Pt^{b})$ was observed in (3).

The Pt_2Rh cluster (5a) was readily converted into the hexafluorophosphate salt by treatment with $NH_4[PF_6]$, but an attempt to prepare the tetrafluoroborate salt by reaction of (5a) with Ag[BF_4] gave (6a), in which the silver chloride formed remained co-ordinated to sulphide. Complex (6a) is therefore a tetranuclear complex containing three different metal atoms. The analogous Pt_2IrAg complex (6b) was prepared in a similar way. Methyl iodide also reacted at the sulphur atom of (5b) to give (7),† rather than undergoing oxidative addition at the Ir¹ or Pt^I centres.

Scheme 1. PP = Ph₂PCH₂PPh₂; reagents: i, COS, -CO; ii, trans-[PtXCl(SMe₂)₂], $-2SMe_2$; iii, PdCl₂(PhCN)₂, -2PhCN; iv, [RhCl(CO)₂]₂, (5a); [IrCl(CO)₃]_n, (5b); v, AgBF₄; vi, excess of MeI.

 ΔG^{\ddagger} values are observed for (**5a**) and (**6a**) which contain the good π -acceptor ligand CO on Rh or Ir. Co-ordination of AgCl in (**6**) prevents the sulphur inversion process from occurring and these compounds are not fluxional.

We thank NSERC (Canada) for financial support.

Received, 30th March 1987; Com. 408

References

- D. I. Gilmour, M. A. Luke, and D. M. P. Mingos, J. Chem. Soc., Dalton Trans., 1987, 335; W. Bos, J. J. Bour, P. P. J. Schlebos, P. Hageman, W. P. Bosman, J. M. M. Smits, J. A. C. van Wietmarschen, and P. T. Beurskens, Inorg. Chim. Acta, 1986, 119, 141.
- 2 A. T. Hutton, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1985, 1677; D. M. McEwan, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1982, 859.
- 3 M. C. Jennings, N. C. Payne, and R. J. Puddephatt, J. Chem. Soc., Chem. Commun., 1986, 1809.
- 4 E. D. Morrison, S. L. Bassner, and G. L. Geoffroy, *Organometallics*, 1986, **5**, 408; G. L. Geoffroy, in 'Comprehensive Organometallic Chemistry,' eds. E. W. Abel, F. G. A. Stone, and G. Wilkinson, Pergamon, Oxford, 1982, ch. 40.
- 5 E. W. Abel, S. K. Bhargava, and K. G. Orrell, *Prog. Inorg. Chem.*, 1984, **32**, 1.